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ABSTRACT

This is a continuation of a series of papers on the digi-
tal geometry of three-dimensional images. In an earlier paper
by Morgenthaler and Rosenfeld, a three-dimensional analog of
the two-dimensional Jordan Curve Theorem was estaklished. This
was accomplished by defining simple surface points under the sym-
metric consideration of 6-connectedness and 26-connectedness and
by characterizing a simple closed surface as a connected collec-
tion of "orientable" simple surface points. The necessity of
the assumption of orientability, a condition cf often prohibitive
computational cost to establish, was the major unresolved issue
of that paper. In this paper, we show the assumption not to be
necessary in the case of 6-connectedness and, unexpectedly, show
that the property of orientability is not symmetric with respect
to the two types of connectedness.
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1. 1Introduction

The digital geometry of three-dimensional images is a
topic of considerable current interest, as a result of the
increasing availability of 3D discrete arrays of data such
as those produced in computed tomography. An introduction
to the topological properties of 3D images can be found in
(1].

One of the interesting problems in 3D digital topology
is that of defining surfaces. Intuitively, a surface S is
a set that is everywhere "thin", in the sense that in the
neighborhood of any p¢S, there are exactly two components
of S (the complement of S), and every neighborof p€S is adja-
cent to both of these components. (This definition will be
stated more precisely in the next section.) 1In [2] it was
shown that surfaces defined in this way satisfy the 3D analog
of the Jordan Curve Theorem, i.e., they separate the space
into two components, an "inside" and an "outside". However,
this was shown only under the assumption that the surfaces were
"orientable", a local property which means that for any p,
the two components of S mentioned earlier remain distinct
even when we enlarge the neighborhood of p. The guestion of
whether non-orientable surfaces existwas left open in [2].

This paper shows that when we use 6-connectedness for S
(see the next section), non-orientable surfaces do not exist.

Furthermore, an example is given to show that surprisingly
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such surfaces can exist locally when we use 26-connectedness.
However, in a subsequent paper by the first author, it will
be shown that globally (i.e., if each point of the set satis-
fies the small neighborhood surface restriction) there can

exist no 26-connected non-orientable surfaces.
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2. Connectivity and simple closed surfaces

n Let I denote a 3D array of lattice points, which, without
h. loss of generality, we may assume to be defined by integer valued

triples of Cartesian coordinates (x,y,z). We consider two types
!! of neighbors of a point p = (xp,yp,zp)EZ:
| ) (i) the neighbors (u,v,w) such that |xp-u|+|yp-v|+|zp-w|==1

(ii) the neighbors (u,v,w) such that max{lxp-u|,lyp—v|+|zp-W|}=%

" : We refer to the neighbors of type (i) as 6-neighbors of p
g (the face neighbors) and to the neighbors of type (ii) as 26-
neighbors of p (the face, edge, and corner neighbors). The 6-
neighbors are said to be 6-adjacent to p, and the 26-neighbors

are said to be 26-adjacent to p. The statement that ais a path

from point p to point g in I means that there exists a positive

integer n such that a={p0,pl,...,pn} < I where Po=Ps P,=q and
} Py is adjacent to Pi_1 for l<i<n. The terms 6-path and 26-path
i‘ are utilized depending on the type of adjacency under considera-
u tion.
E Let S denote a non-empty subset of I which, without loss of
E. generality, we may assume does not meet the border of I. The
E‘ points p and g of S are said to be connected in S provided there
4
E; is a path from p to q which is contained in S. Connectivity
Ei. is an equivalence relation, and the classes under this relation
:‘ : are called components. Again, the terms 6-connectivity, 26-
E connectivity, 6-components, and 26-components are utilized depend-
E | ing on the type of path under consideration.
[ @
g
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Similarly, we can consider the components of the complement
S of S. Exactly one of these components contains the border
of Z; this component is called the background of S. All other
components of S, if any, are called cavities in S. As is the
custom in 2D digital geometry, opposite types of connectivity
are assumed for S and S to avoid anomalous situations.

Finally, let p be a point of S. We let N27(p) denote the
27 points in the (3x3x3) neighborhood of p, and we let les(p)
denote tne 125 points in the (5x5x5) neighborhoocd centered at
p. [Note that in [2], N27(p) and N125(p) were defined so as
to exclude p. The change is made here in order to simplify the

introduction of new notation.]

Surfaces

In [2], the above structure on the 3D lattice was utilized
to introduce the concept of a simple closed surface in order to
establish a non-trivial 3; ..i:alog of the 2D Jordan curve theorem.

A point p€S is called a simple surface point provided:

(i) SﬂN27(p) has exactly one component adjacent to p (in
the S sense); denote this component Ap.
(1i) §ﬂN27(p) has exactly two components, Cl and C2, adja-
cent to p (in the § sense).
(iii) If g¢S and q is adjacent to p (in the S sense), then g
is adjacent (in the S sense) to both C, and C,.

As observed in [2], there are at most two components of

§0N125(p) adjacent (in the S sense) to a simple surface point
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p. Thus, suppose that p is a simple surface point of S and
that each element of Ap is also a simple surface point of S
(i.e., p is not near an "edge"). When §hN125(p) has two
components adjacent to p, (the surface at) p is said to be

orientable and Ap is called a disk. When §hN125(p) has only

one component adjacent to p, (the surface at) p is said to
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be non-orientable and Ap is called a cross-cap.

Theorem 0. [2] If S is a connected collection of orientable
simple surface points, then S has exactly one cavity, and S

is said to be a simple closed surface.

Diid

We quote from [2], " (Theorem 0) is the 3D analog of the

Jordan curve theorem for connected sets of simple surface points.
The defintion given for a simple surface point is modeled after

the standard definition in continuous space, namely that a sur-

vy

face point is one whose neighborhood is homeomorphic with the

—

inside of a circle on the plane. Thus every point in a small
p enough neighborhood of a point must be adjacent to either side
of the surface.

Similarly, the concepts of orientability and cross-caps

——YWy T

° are modeled after the corresponding concepts used in the topo-
[ ' logy of continuous space. A cross-~cap is homeomorphic with a
o Mcbius strip, and may be visualized by deforming the edge of
] the strip to a circle in the plane. Thus, while each point on
the face of the strip appears as a surface point, there is only
one side (face) in the collection of points. We use the
[O
L J
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requirement on the 125-neighborhood of a surface point to
guarantee that such phenomena do not occur (at least locally).
This raises the question of the realizability of cross-
caps in the 3D-lattice. That is, are the definitions of con-
nectedness, together with the definition of simple surface
point, strong enough to imply that cross-caps do not exist?
?rom a theoretical standpoint an affirmative answer to this
question would simplify the definition of simple closed sur-
face, and from a practical viewpoint it would lessen the com-
putational cost of detecting simple closed surfaces. While
various properties such as symmeiries may be used to reduce
the effort needed to answer this question, the answer ulti-

124

mately rests on a case analysis of the 2 different confi-

gurations in the 125-neighborhood of a point p¢S."
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3. Cross-caps in the 3D-lattice

The purpose of this paper is to answer the questions raised
in [2] by (1) presenting in Example 1 a 26-connected cross-cap,
and (2) establishing in Theorem 1 that there exist no 6-connected
cross-caps in the 3D-lattice. Thus, we succeed in simplifying
the definition of a 6-connected gimple closed surface to that
of a 6-connected collection of simple surface points.

Although Example 1 shows that the property of orientability
is not ensured locally by the definition of a 26-connected sim-
ple surface point, the first author has established that this
is so globally. It will be shown in a subsequent paper that a
26-connected collection S of points such that each point of S
is a simple surface point is, in fact, orientable at each point.
Hence, the assumption of orientability may be removed from
Theorem 0 regardless of the type of connectedness under considera-
tion.

Example 1. A 26-connected cross-cap.

lst plane 2nd plane 3rd plane 4th plane 5th plane

00000 00010 00000 00010 000O00O
09010 00101 0600011 00101 00010
00100 01000 00100 01000 00100
00010 00101 00011 00101 00010
000O0O 00010 00000 00010 000O00O

It should be mentioned that the deceptively simple construction
of Example 1 took longer to produce than the complex proof of

Theorem 1 given below. In fact, Example 1 was derived step by




step in a futile attempt to obtain é symmetric argument for
26-connectedness to that given in Theorem 1 for 6-connected-
ness. Perhaps the difficulty in deciding the cross-cap ques-
tions was due to the fact that the answers are so counter
to the intuition established by previous results. Firstly,
one would expect the same answer for the two types of connec-
tivity. Secondly, failing symmetry, one would expect that
6-connectedness, with the greater connectivity of the comple-
ment, would produce the counterexample.

Unfortunately, it is, of course, more difficult to show
that something does not happen in digital geometry than to
present a simple array of "0's" and "1's". The combinatorial

detail involved in the following proof is unavoidable.

Theorem 1. There does not exist a 6~connected cross-cap.
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3.1 Outline of the proof

L
_! Throughout the proof, p denotes a fixed simple surface

point of the 6-connected subset S of I such that each point

of A =N27(p)ﬂs is also a simple surface point of S. Although

P
124

it is not actually necessary to consider individually 2 dif-

’ ferent configurations of N (p) as suggested above, the reader

125
of the following proof may very well begin to suspect that
this is the case. 1Indeed, the fact that the realizability of
cross-caps in the 3D-lattice depends on the choice of 6-con-
nectedness or 26-connectedness witnesses the necessity for a
detailed analysis beyond the symmetric definitions of simple
surface points. The difficulty in deciding the issue for 6-
connectedness ultimately focuses on (i) finding an overall
strategy to upgrade the separation properties of N27(p) to in-

clude N;,5(p), and (ii) finding an efficient notation to describe

the process.
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3.2 Strategy
If M is a subset of I, let M denote MNS. Furthermore, if

N is a subset of I which contains p, let P(N) denote the pro-
perty that N has two 26-components which are 26-adjacent to p.
Hence, our goal is to establish inductively that P(N) holds

where N=N125(p).

0. If N=N27(p), P(N) holds.

l. Lemma 1 establishes that if N is the union of the top two
(3x3)-planes of N27(p) or the union of the bottom two (3x3)-
planes of N27(p), then N can not have three components adja-
cent to p.

2. Lemwra 2 uses Lemma 1 to establish that P(N) holds where N
is the union of five (3x3)-planes centered on p.

3. Lemma 3 uses geometric symmetry on Lemma 2 to observe that
P(N) holds where N is the union of three (5x3)-planes cen-
tered on p.

4. Lemma 4 uses Lemma 3 to establish that P(N) holds where N
is the union of five (5x3)-planes centered on p.

5. Lemma 5 uses geometric symmetry on Lemma 4 to observe that
P(N) holds where N is the union of three (5x5) planes cen-
tered on p.

6. Lemma 6 uses Lemma 5 to establish that P(N) holds where N =
N125(p) = the union of five (5x5)-planes centered on p.

Lemmas 2, 4, and 6 are each proved in a similar manner, but

with escalating complexity, by assuming the negation and

arriving at a contradiction to Lemma 1. Lemmas 2', 4', and

5' are necessary technicalities.




3.3 Notation

For each a = (xa,ya,za), let a(i,j,k)=(xa+i,ya+j,za+k).

L4 e ey
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In addition, let a+ denote a(0,0,1) and a~ denote a(0,0,-1).

rvyrvry

For 2,m,n odd posi-ive integers and k an integer, let:

X o C(m-1) . . . (m-1)
h! (1) Nm’n(a)—{a(l,J,k) ! —— S i = = and
(n-1) . . . (n-=1)
L ai i B e
3 k=g,h _ k
(2) N~ (a) —kgg,hm’n(a)'
e - (2=1) (x-1)
* - ’
(3) nx o(a) =N 2 2 (a)

k k
= * =

k=g,h _ L k=g,h
Na = N3'3 (a), etc.

For example:
= * =
N N3'3’3(a) N27(a)

NE 5 5la) = Nj,o(a)

Ngz3(a) = the (5x3)-plane centered on a(0,0,-2)
— ) =

N5'3(a) = N5'3(a)ls

Ng 5 3(a) = three (5x5)-planes centered on a

Finally,

"4" denotes "contradiction"

"W.L.G." denotes "without loss of generality"

T

C

S S o




3.4 Proof

Lemma 1. If a is a siwple surface point ol i, then two 2o-
=0 L= . .

components of Na cannot be merged in N, - Fu "thermore, nei-

ther of ﬁ;=0'l nor ﬁ;=-l'0 has three 26-components.

Proof: Suppose two components, Cl and C2, of ﬁg are merged

in ﬁa' Let C; and Cj denote the two components of ﬁé, where

W.L.G. (C{UC,)ecy.

(1) [CéﬂNg 3(a)#ﬂ, and hence Ng has three components.] Sup-
’
pose Cénﬁg=ﬂ. Then both of a+ and a- must be in S. To see

that this is true, W.L.G. suppose a+ €S. Then a- must be in S
or else ﬁa would have only one component. Hence, since a+ is

6-adjacent to a and CéﬂNg=ﬂ, then CéﬂN:s#ﬂ. Now, consider the

two cases where (i) some element of CéﬂNZ} is 6~adjacent to a-
or (ii) no element of CénN:: is 6-adjacent to a-~. If (i),

then W.L.G. let y=a(0,—l,—l)ecé. Then y cannot

be 26-adjacent to an element of § which is 26-adjacent
to a+. Thus, {a(—l,0,0), a(l,0,0)p a(-1,-1,0), a(or"llo)l
a(l,-1,0)}cS. Furthermore, since now (C,uc,)n{a(-1,1,0), a(o,1,0),

a(l,1,0)}# @, it follows that a(0,1,0)¢sS (or else C. and C

1 2
would be 26-adjacent in Ng) and that both a(-1,0,-1) and a(l,0,-1)

are in S (or else y would be 26-adjacent to (ClUCZ)CCi)' How-
ever, a(0,1,0) is 6-adjacent to a but it cannot now be 26-con-

nected to y¢C) in ﬁa. (# to (i)) 1If (ii), then %.L.G. let y =

-1

a(l.-l.-l)@CéﬂNéi. Then {a(0,-1,0), a(l,-1,0), a(0,-1,-1),

a(l,-1,-1)}.S. But, since C, and C, are not 26-connected in ﬁg,
one of a(~1,0,0) and a(0,1,0) must also be in S and 6-adjacent to
a. Again, this is impossible for there would not be a 6~path in
Ea from such a point to y€C;. (# to (ii)) Thus {at,a-}cS. How-
ever, since both of a+ and a- are 6-adjacent to a, both must be
26-adjacent to C). Hence, Céﬂﬁg’3(a)#ﬂ. (# from which (1) follows.)
0

Note Cl,Cz,Céﬂﬁg produce three components of ﬁa.

w g . . oy ranl — -
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(2) [The contradiction.] Since ﬁg has three components,

three of {a(-1,0,0), a(o0,1,0), a(0,-1,0), a(1,0,0)} must be

in S. Hence, W.L.G., let {a(-1,0,0), a(0,-1,0), a(0,1,0)}cs,
with yl=a(—l,—l,0) and y2=a(1,—l,0) in different members of
{Cl,CZ,Cé}. Note that one of Yy and Y, is not in (clucz)gp',
otherwise there could not be a 26-path in ﬁa connecting a(0,-1,0)
to Cé without merging Ci and ci. Thus, W.L.G. let ylécl and
y2€Cé. Now, either (i) a(O,l,O)GCz, (ii) a(0,1,0)¢S and
a(-l,l,O)GCz, or {(iii) a(0,1,0)¢S and a(l,l,O)GCz. In either

case, a{(-1,0,0) cannot be 26-adjacent to Cé in Na without

merging Ci and Cé. Thus, two 26-components of Ng cannot be

merged in Na‘ Since ﬁa has two components, it follows immedi-

—i=0,l —i="l,0

ately that neither of Na or Na can have three compo-

nents. The proof is complete.

Lemma 2. Ng 3 5(p) has two components each of which is 26-
4 7

adjacent to p.

rroof: (We do more work than necessary here to establish the

format for the proofs of Lemmas 4 and 6.) (1) [M has two com-

2

ponents which are 26-adjacent to p where M=N UNp.] Suppose not.

p
Since ﬁp has two ccuponents, Cl and C2, which are 26-adjacent

to p, there must exist a 26-path o in ﬁ; from yleN;ﬂCl to y,¢

1
NpﬂCz.

(i) [pt€S] Otherwise, ﬁ; could have only one component.

(ii) [ﬁp+ has two components, Ci and C!, which are 26-adja-

cent to p.] Since p+EAp, p+ is also a simple surface

point of S. Hence, ﬁp+ has two components 26-adjacent
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Lemma 3°'.

to p+. But p is 6-adjacent to p+ in Np+; thus both

these components must be 26~-adjacent to p.

0’1.]

(iii) [Each of Y1 and Yo is 26-connected to p in ﬁ;=
Obvious.
(iv) [The contradiction from which (1) follows.] Since Yy

and y, are 26-connected by agﬁg, {yl,yz} is contained
i=0,1 i=0,1

3 ] ] 1]
in Cl or C!, say Cl' However, now ClﬂNp ,CjW%
y agi=0,1 =i=0,1 .
CzﬂNp produce three components of Np in con-

tradiction to Lemma 1.

(2) [ﬁ§ 3 5=MUN_2 has two components which are 26-adjacent to p.]
[4 [4

p

This statement follows immediately from a symmetric argument

to that given in (1).

Lemma 2'. Suppose a is a simple surfacé point of S and each of

a+ and a- is either in S or is also a simple surface point of S;

then ﬁ§ 3 5(a) has two components which are 26-adjacent to a.
14 [

Proof: This follows immediately from the proof of Lemma 2.

Lemma 3. ﬁ; 3 3(p) has two components which are 26-adjacent
14 r

to p.

Proof: Geometric symmetry to Lemma 2.

and b=a(-1,0,0), bl=a(-l,0,l), b2=a(0,0,—l) are all in S, and

DﬂCl#ﬂ where Cl and C2 are the two components of ﬁa and D =

, and

Consider Na’ where a is a simple surface point of S,

A .
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ta(1,1,0), a(1,0,0), a(l,-1,0)}. Then each of b and by is

26-adjacent to ClﬂM, where M=N;=_1’O.

Proof: Suppose Na and M are as above and b is not 26-adjacent

to ClﬂM. (Observe that bl is 26-adjacent to C,fIM if and

1
only if b is 26-adjacent to ClﬂM.) Let H = {a(-1,1,0),
a(0,1,0), a(:,1,0), a(-1,1,-1), a(0,1,-1), a(i,1,-1)} and K =
{a(-1,-1,0), a(0,-1,0), a(1,-1,0), a(-1,-1,-1), a(o0,-1,-1),
a(l,-1,-1)}. Since {a,b,bl,bz}gs and Dﬂcl#ﬂ, observe that if

Hﬁcz#ﬂ and KﬂCZ#ﬂ, there is no 26-path in MNC, from HNC, to

2 2
KOCZ.

(1) [Claim: Hﬂcz#ﬂ and KﬂCz#ﬂ] Suppose HﬂC2=ﬂ. By assump-
tion b is not 26-adjacent to C,MM. But since b is 6-adja-
cent to a, there nwust exist a path ¢ in N;ncl from b to
DﬂCl. Also, since anz#ﬂ, x=a(0,1,0)¢S. Hence, x must
be 26-adjacent to C,. But since Dnleﬂ, Czﬂ{a(l,0,0),
a(l,0,-1), a(1,0,1)} = @ and it follows that x must be
26-adjacent to some xléN;ﬂCZ. Now, since ClﬂNé#ﬂ and
CzﬂNi#ﬂ, a(0,0,1y¢s. Therefore, a(0,-1,1)¢€z; this is
the only remaining possibility for a 26-path from b to DﬂCl.
Eence, x2=a(0,-l,0)}(C2 since it is 26-adjacenc to a, and

xzﬂCl since b is not 26-adjacent to ClﬂM. Thus, €S,

%2
and being 6-adjacent to a, e must be 26-adjacent to C2.

Since a(O,—l,l)€C1, X, must be 26-adjacent to some point

3 in N;lﬂKOCZ. However, now there is no possible path

X
in NaHC2 from Xy to x3.# Hence Hﬂcl#ﬂ, and similarly

KNC,#0.
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(2) [The contradiction.] From the above, it follows that
Mﬂcl, anz' and Kﬂc2 produce at least three components
.=_l,0

of ﬁ; in contradiction to Lemma 1.

Lemma 4. ﬁg 3 5(p) has two components which are 26-adjacent
’ 14

Proof: (1) (M has two components which are 26-adjacent to p where
2 —
= * *
M N5'3'3(p)UN5’3(p).] Suppose not. From Lemma 3, N5'3,3(p)
has 2 components, C, and Cor which are 26-adjacent to p. Thus
if M has only one component 26-adjacent to p, there must exist

1l 1l
5’3(13) to y2€C2ﬂN5’3(p).

a 26-path a in ﬁ§’3(p) from y, €C;NN
(i) [p+€S.] Suppose p+€¢S. Let a;=p(-1,0,1) and a,=p(1,0,1).

Now p+ must be in one of Cy and C2’ say p+€c1. Then
either (a) {Yl’yz} is contained in the leftmost column
of Né'3(p), (b) {yllyz} is contained in the rightmost
column of Né’3(p),or(c)a is 26-adjacent to p+ and we
can assume p+=y,. In either case, it follows that
{Yl'yz}iﬁg and Yq is 26-connected to Yo in ﬁ; where
a=a, or a=a,. However, since Y1 and y, are not 26-

connected in M, aEanS, and hence a is a simple sur-

=—1'0CM; and the above situa-

face point of S. But ﬁ;

tion violates Lemma 1. (# from which (i) follows).

(ii) [N (p+) has two components, Ci and Cé, which are

*
5,3,3
26-adjacent to p.] Since p+ is a simple surface point
of 8 and each of p+(-1,0,0) and p+(1,0,0) is either

in S or is a simple surface point of S, it follows from
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geometric symmetry to Lemma 2' that ﬁg 3 3(P+) has
’ 14
Lﬂ two such components which are 26-adjacent to p+.

Furthermore, since p is 6-adjacent to p+ in N

pt+’

each of these two components must be 26-adjacent to

P.

(iii) [Each of Y] and Y, is 26-connected to p in ﬁg=g'l(p).]
I

Consider Yy arpbitrarily. If ylENg+, we are finished.

Hence, W.L.G. let Yy be in the leftmost column of
Né,3(p). If y; is not 26-connected to p in M, then
p(l1,0,1) and p(1,0,0) must be in S. However, if we
assign a=p(1,0,1), b=p+, bl=p, and b2=p(1,0,0) and

then apply Lemma 3' with yleDﬂCl, it follows that Yy

is 26~-connected to p in ﬁl='lr0 Cﬁl=0,l

p(1,0,1)="5,3 (p). (# from

which (iii) follows.)
(iv) [The contradiction from which (1) follows.] Since

y; and y, are 26-connected in N* (p+), W.L.G. let

5,3,3
{y;r¥,1cC{. Now, p must be 26-adjacent to crag==0r1,

2°p
However, Clﬂ§;=0’l, C ﬂﬁ;=0’l, and C'ﬂﬁg=0’l produce

2 2
at least three components of ﬁ;=0’l in contradiction

to Lemma 1.

(2) It now follows immediately by a symmetric argument to that

PrPT—

given above that N* (p)=ﬁuﬁ_2 (p) has two components
3’3’5 5I3
¢ which are 26-adjacent to p.
Lemma 4'. Suppose a is a simple surface point of S and each of
‘ {a(-1,0,i), a(0,0,i), a(1,0,i) | i=0,3} is either in S or is al-

so a simple surface point of S; then Ng 3 5(a+) has two compo-
[4 r

nents which are 26-adjacent to a.




Proof: Suppose not. Note that ﬁg 3 3(a) has two components
14 (4

26-adjacent to a by geometric symmetry to Lemma 2', and then

—i=-1,2 N =0
so does N5,3 (a)—N5'3'3(a)UN5’3(a(0,0,2)) by the proof of

Lemma 4. Furthermore, if a+¢S or a(0,0,2)¢S, then the proof
is finished as in the proof of Lemma 4. Thus, suppose a+¢€S,
a(0,0,2) €S, and there is a 26-path a in ﬁé 5(a(0,0,2)) from

,

yléclﬂﬁg 3(a(0,0,2)) to yzéczﬂﬁg 3(a(0,0,2)) where Cl and C
i=
5,
let a+€Cl. Then Y, must be in either the rightmost or left-

2
are the two components of N

_l’
3(a) 26-adjacent to a. W.L.G.
most column of Ng 3 (a(0,0,2)), say rightmost. Furthermore,
(4
{a(1,0,2), a(1,0,1)}<S, ard by Lemma 1, y, and a+ are in op-
posite components of N . However, a(0,0,2) is 6-adja-
a(l,0,2)
cent to a(l1,0,2) and, by geometric symmetry to Lemma 2°',
ﬁg 3.3(a(0,9,2)) has two components 26-adjacent to a(0,0,2).
14 1 4
Hence, Yifﬁg(l,o,zy and Yo and a+ are also in opposite cavponents of N§l3'3
(a(0,0,2)). Therefore Yy and a+ are in opposite components of

0
5,3

{a(-1,0,1), a(-1,0,2)}cs, and Yy and a+ are in opposite components

ﬁg 3,3(a(0,0,2)), y, is in the leftmost column of N (a(0,0,2)),

of both Na(-l,0,2) and Na(-l,O,l)' Now, since there is a path

. o=i=-1,2 < - r Yo
in N5,5,3 (a) from a to Yy we have Y4 26-connected to y, in

“i=-l’O - ' . .
Na(—l,O,l)’ Thus, a(-1,0,0)¢S, and Yq and a+ are in opposite

components of ﬁa(-l 0,0)°
1 [ 4

symmetry to Lemma 2' that yi and a+ are in opposite components
_i=—l'2
’3’3(a) and thus of N5,3

a contradiction from which the Lemma follows. Ilience

ﬁ;=;1'3(a)=ﬁg 3 5(a+) has two components 26-adjacent to a.

However, it now follows by geometric

of N (a). Since {a+,yi};cl, this is
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Lemma 5. 3(p) has two components 26-adjacent to p.

N *
Ng, s,

Proof: Geometric symmetry to Lemma 4.

Lemma 5'. Suppose a and b are simple surface points of S,

N* (a) has two cocmponents, C, and C,, 26-adjacent Lo a,
5,5,3 1 2

and bENg is 6-connected to a via simple surface points in Ng;

then Cigcl and Céicz where Ci and Cé are the two components

of ﬁb 26-adjacent to b.

Proof: Follows immediately from the definition of simple sur-

face point.

Lemma 6. ﬁg 5 5(p) has two components which are 26-adjacent
14 ’

to p.

Proof: (1) [M has two components which are 26-adjacent to p
, 2 —x sy s

= * ?
where M N5’5’3(p)Ud5'5(p).] Suppose not. N5’5’3\p) has two

components, Cl and C 26-adjacent to p by Lemma 5. Hence, if

2I
M has only one component 26-adjacent to p, there must exist a
.o=2 1 1
path : in NS,S(p) from ylEClﬂNSIS(p) to y2€C2ﬂN5'5(p).
(i) [p+¢€S.] Suppose p+€¢S. Then one of Yq and y2 can-

i=0,1

not be 26-connected to p in NS 5
r

(p) or else Yy would

be 26-connected to Yo in (p) via p+. Further-

N %
NS,s5,3
more one of Y1 and y, must be 26-~connected to p in

—=i=0,1 . 0
NS,S (p). If not, there would exist {ql,qz}:Apan

such that each of q; and 9, is 6-connected to p in

Ngﬂs, Y1 and p+ are in opposite components of W_ , and

1

e
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Y, and p+ are in opposite components of ﬁé . But
2

UN * . 1 1 ',
a, NqZSNS,S,i(p)’ this contradicts Lemma 5

since N

[To see that there exist such points q; and d,s Sup-
pose that y, is not 26-connected to p in ﬁéig'l(p).
If Yy is not contained in 2={p(-2,-2,1), p(-2,2,1),
p(2,-2,1), p(2,2,1)} then there must exist qléNgnS

which is 6-adjacent to p such that yleﬁil,‘or else
J;Tg'l(p) . Also,
since Yy and p+ are in different components of ﬁ?=0’l
by Lemma 1, they are in opposite components of N l.
If Yy is contained in Z, then W.L.G. let yl=p(2,2%l).

y; would be 26-connected to p+ in N

Again, q1=p(l,l,0) and x=p(l,1,1) must be in S, or

else yq would be 26-connected to p+ in ﬁ;ig’l. Now,

if both of p(0,1,0) and p(1,0,0) were in S, p would
be in N,NS but not 6-connected to x in A, . Hence,
since x is a simple surface point of S, it follows
that one of p(0,1,0) and p(1,0,0) must be in S. Thus,
q, is 6-connected to p in Ngﬂs, and, as before, Y1
and p+ are in opposite components of ﬁé . The exis-

1
tence of q, is established in a similar manner, if

one supposes y, is not 26-connected to p in ﬁ;=g’l(p).]
[4

Hence, W.L.G. assume Y1 is not 26-connected to p in

—'i=0'l
N5 5

. . v o=l
y,- As above, if (a) y, is 26-connected to yleNSIS(p)/

(p) but that Yo is so connected. Now, consider

. =1 . 1
Z in NS,S(p)’ then there must exist qupan such that
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(ii)

q is 6-adjacenc to p+ and yi and p+ are in opposite

components of If (b) Yy is not 26-connected to

N
=1 L=l
NS,S(p)/Z in N5,5(p), then W.L.G. let yl=p(2,2,l) and
note that {p(1,1,1), p(1,2,1), p(2,0,1)}-S. Also,
¥y and p+ are in opposite components of Np(l,l,l)'
Since « must connect y, and y., in N2 (p), there

1 2 5,5
exists y;€{p(1,2,2), p(2,0,2)}NS. W.L.G. let yi=
p(2,0,2). Then it follows that g=p(l1,0,1)¢S or else
Yy and p+ would be Z26-connected in Np(l,l,l)'
Furthermore, since q is 6-adjacent to p{(l,1,1), yi and
p+ are in opposite components of ﬁé by geometric sym-
metry to Lemma 1. lience, either in case (a) or (b)

we have that there exists q&prN; such that q is 6-

acjacent to p+ and p+ and yi are in opposite compo-

nents of N_ where v! is 26-connected to y, in ﬁlzl’z(p).

a 1 1 5,5
l.owever, by geometric symmetry to Lemma 4', it then
follows that Ng , g (P+) must have two components 6-

! 14
adjacent to g. Thus, Y1 and v+ (hence Yy and y2) are
not 26-connected by a path in §525(p). (# from which
14
(i) follows.)
. . =i=0,1
[Each of y, and y, is z6-connected to p in Ny ¢ (p).]
suppose arbitrarily that Yy is not so connected to p.
From geometric symmetry to lLemma 4', there exist two
~ 1 E -~ =N Y

components, Cl and L2 of NS,5,3

Then from Lemma 3' as applied in the proof of Lemma 4,

{n+) 26-adjacent to p+.

ylf’mp(lrj'l) ‘ l:i—lloll}l J{ZIZ}]’”{p(lIJIl) f i€{—2,2},
j€{~1,0,1}}. Thus W.L.G. let yltp(2,2,1) and observe
that g=p(l,1,0) and g+-p(1l,1,1) must be in $ (hence,

also in Ap) or else Yy would be 26-connected to p in
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ﬁl=0’l(p). Also, x,=p(l1l,2,1) and x,=p(2,1,1) must
5,5 1l 2

be in S or Yy would again be 26-connected to p in

—i=0’l
N5 5

B={p(0,1,1), p(1,0,1), p(0,1,0), p(1,0,0)}. Let

(p) by application of Lemma 3'. Now consider

A and B denote the two components of N 26-adjacent

g+
to g+ where yj€A. [HNA=@g.] If HNA#@, a 26-path in
ﬁé+ would merge two components of ﬁ;:-l’o in contra-

diction to Lemma 1. [HNB#@.] Suppose not. Then HCS.

If x,=p(l,2,0)€S, then x,€A and one of K={p(0,1,2),

3 3
p(0,2,2)} must be in B since Xy is in S and is 6-adja-
cent to g+. Thus y=p(2,1,2)¢B since there is a 26-path
from y; toy, in ﬁéss(p). But g must be 26-adjacent

to B and x=p(2,0,0) is the only remaining possibility
which implies that p(2.0,1)¢S. However, observe that
now there is no path from x to K in ﬁé which is im-
possible since KiB#@. Hence x3€s. Now, by an applica-
tion of Lemma 3', it follows that Y1 is 26~-connected

to p(0,1,0) by a path in Fi=-1,0

g+
since (HU{x3})5S. Hence, HNB#@. Let t,€¢HNB. Now

, which is impossible

2
consider N _,. One of p(0,1,1) and p(1,0,1) must be in

g+
S, or else ﬁé+ would merge two components of ﬁgj-l’o.

Hence, since g+ is 6-connected to p+ in Ng+ﬂs, by Lemma

5', W.L.G. A'cCJ and BcCj. Note t,€Cj, and since ﬁ;l
cannot merge two components of ﬁé=0'l, t,€C,.
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(a)

(b)

(iii)

(iv)
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i=0,1
5 (p).

5,
Cl such

Suppose y, is not 26-connected to p in N

Then, as above, there exists tléNéj~lloﬂ

that tl is in one of Ci and C2 and N is in the

other. Thus, since Yy is 26-connected to Yo in

"'* I3 AW ' C '

N5,5'3(p+), ty;,¥,7.C; and {tl,tz}_cz. But {tl,tz}E
i=-1,0 . ) . =i=-1,0
p+ r¥, and tl is not 26-connected to t2 in Np+ re.

Hence, by Lemma 1, tl 1s not 26~—~connected to t2 in

N

NE o 5ipt). (¢ to (a)).

Suppose y, is connected to p in ﬁ;zg'l(p). Let t;¢
, -
N;=O’IQC2 such that £y is 26-connected to Yo in
—=i=0,1 . o . i=0,1
. ] LAY here exis € .
N5,5 (p) Since p , there exists t3 Np ﬂCl
. - v, Ti_':Oy}. . - [ 1

Consider {tl,tz,ts,_Np - Note ity,t,} C, and
therefore neither is 26-adjacent to ty€Cy in ﬁ;zo’l.
Also, t2 is not 26-connected to Yq (hence to y2) in

* +). 1 t. 1s not -C " i
N5’5'3(p ) Thus 5 1 not 26-connected to tl in
E;zo'l. Hence, there ave ciirec components of ﬁ;=0'l

in contradiction to lemma 1. (# from which (ii) follows.)

[N* (pt) nus two componentsg, ¢ and C!, 26-adjacent
5,5,3 1L 2
to p.! As noted above, tnis follows immediately from

geometric symmetry Lo Lonma 4°
[The contradiction to {rowm wihich (1) {ollows.] Since

y; and y, are 26— onnoctad in N ;(Pr), W.L.G. let

3151
. , . i =i=0,1
{yl'y2}~ti' Now, P must ve 26-adjacent to CéﬂNp .
i=0, ] =0 e et
However c, Nt 0’l, i ‘J} 'l,uuuCl;N 0’lproduce at
! 1 ''p 2P 2°p
=0, 1. . .
least three componnnts of Np "" in contradiction to

Lemma 1.

<4
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(2) It now follows immediately by a symmetric argument

to that given above that N% (p)=MUN -2 (p) has two
5,5,5 5,5

components which are 26-adjacent to p.
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